
Annotation of Bacterial and Archaeal Genomes: Improving Accuracy and
Consistency

Ross Overbeek,† Daniela Bartels,‡,§ Veronika Vonstein,† and Folker Meyer*,‡,§

Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, The Computation Institute, University of Chicago, Chicago, Illinois 60637, and
Mathematics and Computer Science, Argonne National Laboratory, Argonne, Illinois 60439

Received June 11, 2003

Contents
1. Introduction 3431

1.1. What Is Meant by “Annotating a Genome”? 3433
2. Gene Prediction in Bacteria and Archaea 3433

2.1. Prediction of Protein-Coding Genes 3434
2.1.1. Calling ORFs vs Gene Prediction 3434
2.1.2. Strategies for Gene Calling in

Prokaryotes
3434

2.1.3. Assessing Performance 3434
2.1.4. (Mostly) Intrinsic Approaches 3435
2.1.5. Extrinsic Gene Callers 3436

2.2. Discussion of Tools for Predicting
Protein-Coding Genes

3437

2.2.1. Difficulties with the Correct Start
Prediction

3437

2.2.2. Problems Caused by Low Sequence
Quality Genomes

3437

2.2.3. Gene Calling for Metagenomics 3438
2.3. Prediction of Non-Protein-Coding Genes and

Features
3438

2.3.1. Prediction of Ribosomal RNA (rRNA)
Genes

3438

2.3.2. Prediction of Transfer RNA (tRNA) Genes 3438
2.3.3. Prediction of Other Non-Coding RNA

(ncRNA) Genes
3438

2.4. Discussion of Gene Calling 3438
3. Characterizing Function 3438

3.1. The Use of a Controlled Vocabulary and the
Need for Consistency

3439

3.2. Initial Annotations 3440
3.3. Specialized Tools To Support Assignment of

Function
3441

3.4. Protein Families 3441
3.4.1. PIR: In the beginning... 3443
3.4.2. SwissProt 3443
3.4.3. UniProt 3443
3.4.4. COGs 3443
3.4.5. TIGRFAMs 3443

3.5. Annotation of Related Protein Families 3443
3.6. Functional Coupling 3444

3.6.1. Functional Coupling Based on
Chromosomal Clusters

3444

3.6.2. Functional Coupling Based on Detection
of Fusion Events

3445

3.6.3. Functional Coupling Based on Regulatory
Sites

3445

3.6.4. Functional Coupling Based on Analysis of
Expression Data

3445

3.6.5. Functional Coupling Based on
Occurrence Profiles

3445

3.6.6. Functional Coupling Based on
Protein−Protein Interaction Data

3445

3.7. Expert Curation 3445
3.8. Why Annotations Will Rapidly Improve 3445

4. Summary 3445
5. Acknowledgment 3446
6. References 3446

1. Introduction
The speed with which sequencing technology has ad-

vanced and will continue to advance plays a central role in
the topic of this review. Figure 1 summarizes the situation
and has been presented in one form or another by many
authors.

This rate of increase and its impact on biology are
analogous to the impact of chip development technology on
computing. In the case of computing, Moore’s law is widely
thought of as symbolizing the impact of a technology driving
a scientific discipline. It is important to consider the
cascading scientific opportunities produced by what appeared
to be just an engineering triumph. If indeed there is a lesson
to be learned from the developments in computing, it is that
the outcome of such rapid technological advances can have
profound and often unpredictable consequences for science.
The rapid advances in basic infrastructure support and
produce numerous research opportunities.

If we pursue the analogy between advances in sequencing
technology and advances in microchip production, the topic
of this review, annotation of genomes, corresponds very
roughly to packaging the underlying electronics in forms that
support mass consumption. Such packaging was of far less
significance than the underlying driving technology, but it
did play an essential role. The innovations that arose allowed
the advances in microchips to have an almost immediate
impact on both commercial and scientific applications.
Similarly, the quality of annotations that we make for the
thousands of genomes that will soon exist will determine
their utility.

In this review, we focus on annotation of prokaryotic
genomes. We do so for a number of reasons. The most basic
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is that we are now seeing the introduction of newly
sequenced prokaryotic genomes at a rate of tens or even
hundreds per month. This rapid increase in volume offers

real opportunities for improving the quality (as counter-
intuitive as this may seem). The presence of more genomes
lays the foundation for comparative analysis, which is the
key to high quality. This will also be true of eukaryotic
genomes, but not for a few more years; in eukaryotes,
problems relating to gene identification and the presence of
numerous copies of paralogs (closely related genes resulting
from duplications) introduce substantial complexities that can
be largely avoided in the analysis of prokaryotes. Moreover,
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the importance of addressing simpler problems before more
complex ones seems obvious, and the scientific infrastructure
offered by thousands of well-annotated prokaryotic genomes
does arguably lay the foundation for study of the most
fundamental issues in biology.

Before proceeding to a detailed discussion of what we
mean by annotation (essentially the identification of gene
locations for RNA-encoding and protein-encoding genes,
along with a short description of the functions of the gene
products), let us consider the overall picture of how annota-
tions are now produced.

The process shown in Figure 2 is our view of how
annotations are now done and how they will probably be
done for the foreseeable future. This process has emerged
as the most viable way to improve a situation containing
substantial inconsistency and numerous errors. Our very
broad-brush overview is as follows:

1. The initial annotations are in most cases provided
by the sequencing centers. As we move to sequencing
thousands of genomes per year, we believe that the
percentage done by the sequencing centers will increase.
The quality of these annotations is determined by the
availability of well-curated protein families. The initial
annotations are deposited in sequencing archives and may
or may not be updated as time passes.

2. The production of well-curated protein families is
now largely dominated by a few groups, most notably
UniProt3 (SwissProt and the Protein Identification Re-
source (PIR)), Kyoto Encyclopedia of Genes and Ge-
nomes4 (KEGG), The Institute for Genome Research5

(TIGR), and the Project to Annotate a 1000 Genomes6

(P1K Project). These collections of protein families
represent ongoing maintenance of archived sequences. It
is through these families that most errors are corrected
and new wet-lab results propagated.

3. Ultimately, the improvement of annotations results
from wet-lab results and careful analyses provided by
domain experts. These advances are reflected in the initial
annotations and through ongoing curation of protein
families. The archived annotations tend to go out of date,
since regular updates are often not performed.

It is worth reflecting on the central curation role played
by the teams maintaining protein families and their failure
to impact the archives. There is no single, accepted collection
of protein families. Rather, we see a rapid improvement based

on open exchange that will gradually improve consistency
of vocabulary and increase accuracy. Each of the main
annotation/integration groups seeks accurate, comprehensive
annotations in a controlled vocabulary. The fact that each
of the main annotation efforts directly benefits from inspec-
tion of the others is producing a spontaneous convergence.

1.1. What Is Meant by “Annotating a Genome”?
Abstractly, annotating a genome amounts to attaching

information to support use of the genome. This includes an
almost endless variety of types of analysis and attachment
of interpretations. In our experience, it has proven useful to
prioritize the analyses, and the following items provide at
least a reasonable working notion of what is meant:

1. Genes are identified. This effort includes at least
protein-encoding genes and some of the RNA-encoding
genes (often just tRNAs and rRNAs).

2. The functions of genes are predicted.
3. Metabolic reconstructions are developed and tied to

the specific genes.
4. Prophages, insertion sequences, and transposons are

labeled.
5. Frameshifts and pseudogenes are predicted.
6. Regulatory sites and operons are identified as a step

toward developing an inventory of regulons.

In practice, usually only the locations of genes and their
predicted functions are provided by the initial annotation
effort. Accordingly the first part of this review deals with
the status of gene identification in prokaryotes, and the
second part deals with the task of predicting the function to
be associated with protein-coding genes.

2. Gene Prediction in Bacteria and Archaea
Once the sequence of a prokaryotic genome has been

determined, the next step is the definition of the functional

Figure 1. Growth of available genomes and SwissProt annotations.
While the primary sequence repository (GenBank1) doubles in size
every 18 months, high-quality annotations (we take SwissProt2 as
an example) cannot keep up with this growth. The graph compares
the growth on a logarithmic scale.

Figure 2. How annotations are done. This diagram is intended to
convey the interactions between the different types of activities that
make up the annotation process (blue). A key point is that
maintenance and improvement of annotations originate in expert
analysis and are reflected through protein family curation, since
the “curate genomes” activity is seldom done.
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elements coded by the sequence. This process is usually
referred to as gene prediction or gene calling.

For high-quality genomes of prokaryotes, the quality of
gene calls is usually very high; several good software
solutions exist. Today more than 95-97% of the protein-
coding genes can be correctly identified by state-of-the-art
software.

For a number of years, the only type of genes that was
considered was protein-coding genes (so-called coding
sequences or CDSs). In recent years however, this notion
has changed, and nowadays genes not coding for proteins
(non-protein-coding genes) are included as well. Work on
CDS prediction has a long history, starting with a number
of publications in the early 1980s by Staden, Borodovsky,
and others,7-9 and is still an active field of research.10-14

Work on the prediction of noncoding sequences has been
picking up speed lately.

2.1. Prediction of Protein-Coding Genes

Unlike the prediction of eukaryotic genes, prediction of
genes in prokaryotes is a rather well-understood process with
rates of recognition well above 90% (see, e.g., McHardy et
al.15).

2.1.1. Calling ORFs vs Gene Prediction

Sometimes gene prediction in prokaryotes is mislabeled
as ORF finding. Prediction of ORFs and gene prediction are
two distinctly different tasks, the first one being of trivial
nature. Open reading frames (ORFs) are defined as stretches
on the chromosome between a start codon initiating protein
translation and a stop codon terminating it.

By simply extracting all subsequences that end at a stop
codon whose length is divisible by three that have a valid
start codon at their first position and include no other stop
codon, the set of all ORFs can be extracted for a given
genomic sequence. Extracting all ORFs of minimum length
90 nucleotides forEscherichia coliK12 (NCBI Taxonomy
ID 83333.1) generates a list of 86 919 ORFs or protein-
coding gene candidates. A good rule of thumb predicts
approximately 1000 genes per million base pairs in a
prokaryotic genome, leading us to assume about 4600 genes
in this 4.63 million base pair genome; indeed most annota-
tions show roughly 4600 genes.

While it is relatively simple to compute all ORFs for any
given genome, the selection of the ORFs that code for
proteins from that large set is much harder. Figure 3 shows
the ORFs and protein-coding genes for a short sequence,
highlighting the difference between ORF calling and CDS
prediction.

From a computer science viewpoint, the problem of gene
prediction in prokaryotes can be expressed as a binary
classification problem. From the large set of ORFs, the
smaller set of CDSs needs to be extracted.

2.1.2. Strategies for Gene Calling in Prokaryotes

Today numerous software solutions are available to
automate prediction of genes for prokaryotes. The task that
they fulfill is the determination of the subset of ORFs1 that
code for proteinsin ViVo.

While a manual procedure can easily be devised, it is error-
prone and extremely tedious; after all, the ratio of ORFs to
real proteins is>18:1.

Two distinct classes of automated gene prediction algo-
rithms exist: intrinsic approaches that rely primarily on
statistical properties of the coding sequences (see section
2.1.4) and extrinsic approaches (see section 2.1.5).

We note that a comprehensive comparative study of the
prediction performance of most of the tools cannot be easily
implemented. Only some tools are available in a format that
allows large-scale testing and comparison of results. There-
fore, a systematic study of the performance characteristics
is next to impossible; we are drawing heavily on previous
studies done by McHardy et al.15 and our experience with
reannotating hundreds of genomes.

2.1.3. Assessing Performance
Before we can study the gene calling systems and their

underlying technologies in greater detail, a quick detour into
statistics is required. We are treating the prediction of protein-
encoding genes as a binary classification problem. The output
of a classification algorithm (here the attempt to sort ORFs
into coding and noncoding) can be split into four distinct
classes: true positives (tp), true negatives (tn), false positives
(fp), and false negatives (fn). By comparing the predicted
genes with the annotated genes, one can determine the
number of correct gene predictions (tp), the number of false
gene predictions (fp), the number of genes that were not
found (fn), and the number of correctly classified noncoding
ORFs (tn).

Of course, classifying results into these four types requires
a standard of truth. Since only very few genes have been
actually confirmed in wet-lab experiments for a limited
number of organisms, current best practice is to evaluate gene
prediction algorithms by comparison to published annotations
for relatively well-studied organisms. While this method has
obvious shortcomings, we know of no alternative except for
comparative analysis of genomes or large-scale wet-lab
experiments.

We can analyze the performance of a given gene prediction
method by measuring sensitivity (Sn) tp/(tp + fn), fraction
of correctly identified genes) and specificity (Sp) tp/(tp +
fp), fraction of correct predictions).

If these terms seem to be complicating the issue, imagine
a classification strategy that achieves a perfect score for either
specificity or sensitivity with no regard to the other dimen-
sion. Just calling all ORFs will yield a perfect sensitivity;
however, the specificity will be terrible. On the other hand,

Figure 3. Gene prediction: from ORFs to coding sequences. From
a large set of candidate open reading frames (ORFs), a smaller
subset of coding sequences is selected.
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perfect specificity can be achieved by just calling one ORF
with very solid sequence homology to support it. Clearly
any attempt to evaluate gene callers must include both
parameters.

2.1.4. (Mostly) Intrinsic Approaches

In the 1980s, researchers discovered7-9 that coding se-
quences exhibit a number of properties that distinguish them
from noncoding sequence and thus allow their automatic
detection.

As early as 1984, R. Staden described how base composi-
tion, codon composition, and amino acid composition of a
coding ORF can be used to distinguish it from noncoding
ORFs.8

To achieve automatic detection of sequences showing the
distinguishing properties of coding ORFs, techniques from
machine learning are applied. As shown in Figure 4, a
positive training set describing ORFs assumed to be coding
is extracted from the genome. The training set consists of
genes that are very likely to be coding, for example, long
nonoverlapping ORFs or genes that, from BLAST compari-
son or their domain composition, have evidence to be real.
While sometimes the genomic mean is used as the back-
ground or negative training set, some approaches use regions
deemed to be not coding for the negative training set.

Typically the gene prediction programs will use Markov
chains to derive models for coding and noncoding ORFs. A
Markov chain is a network ofstates(the letters in the DNA
alphabet) connected bytransitions.Let us assume that in a
very simple world the probability for the occurrence of a
single nucleotide in coding and in noncoding sequences
depends only on one previous letter. The Markov chain
would containtransitionsfrom every letter in the alphabet
to every other letter.

From a (small) training set of known true ORFs, poten-
tially genes that have been experimentally verified, we can
derive the specific probabilities for the transitions for coding
and for noncoding stretches of DNA. If coding and non-
coding ORFs exhibit different properties, a simple approach
to gene prediction is to check whether the probabilities for
a given ORF under the coding model is higher than those
under the noncoding model.

Computing the probability of GATC under a Markov chain
can be translated into

If we performed this computation for both models and
compared the results, we would have a basis for determining
whether the ORF is more likely to code for a protein or not.
Even in this simple view, however, picking the ORF with
the correct start location is problematic.

Unfortunately, in the real world, models used in gene
prediction need to be more complex. More factors than
simply the previous nucleotide must be included in the
statistical models. Examples of such properties are as
follows: different GC content in coding genes; the GC
content of the third position in a codon; nucleotide frequency;
trinucleotide frequency; dinucleotide frequency and multi-
character frequencies; presence of ribosomal binding sites
(RBS).16 Still the model described above uses the basic
approach taken by most of today’s tools.

Initially a set of ORFs deemed to be coding, as well as
the properties of that set, is extracted. A model is formed,
and then every ORF in the genome is compared against the
model (Figure 5). A background model is used for an
additional comparison.

More details on the mechanics of hidden Markov models
(HMMs) and their applications in bioinformatics are nicely
described in the book by Durbin et al.17

Since the matching procedure can be performed irrespec-
tive of the data contained in the Markov model, some groups
make their precomputed models available but offer no access
to the training procedure. This in effect limits the user to
the set of organisms that the sets were trained for. Using the
models for other organisms is next to impossible and can
generate an unpredictable outcome.

2.1.4.1. GLIMMER by Salzberg et al.One of the most
often applied programs for gene prediction is GLIMMER,
originally developed at TIGR and now supported and
developed by S. Salzberg’s group.

Originally published in 1998,18 it has seen various
improvements. The second major release, GLIMMER2,19

utilizes variable word length when creating the models. More
recently, a change in the early phase of a GLIMMER2 run
has been introduced; by changing the code for the creation
of the initial training set, a significant performance increase
was achieved. Initially GLIMMER2 relied only on long,
nonoverlapping ORFs.

A newer version, GLIMMER3,20 has been made available
recently, but there is as yet no third-party analysis of its
performance characteristics. The authors of the software cite
reduced numbers of false positive predictions and more
accurate start predictions as the main improvements over the
previous versions.

GLIMMER2 uses a variant of hidden Markov models,
called interpolated context models, that allow for contexts
of varying length to be used for each genome individually.
However, the properties discussed for the HMMs still apply.
In addition, RBSFinder21 can be used to predict translation
start sites, which can help to refine the start positions of the
genes GLIMMER2 predicts.

One of the problems most often incurred with GLIMMER2
is its tendency to overpredict, resulting in a low specificity.
Depending on the GC content of the respective genome,
overprediction rates of 60% have been observed. While this
can be tolerated and may in fact be viewed as beneficial if
false positive gene calls have no adverse effect on a certain

Pchain(G|<startsymbol>) × Pchain(A|G) × Pchain(T|A) ×
Pchain(C|T)

Figure 4. Positive and negative training set are derived from the
genomic sequence. From the genome sequence, either a specific
background model of noncoding regions is generated, or the
complete genome is used as a background model.

Figure 5. Using the derived model to classify ORFs into coding
and noncoding. If a given ORF fits the training set better than the
background set, it is assumed to be coding.
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project, it can nevertheless be quite frustrating in several
situations. If false positive gene calls are viewed as prob-
lematic for a given application, postprocessing is required
for many genomes. The sensitivity of GLIMMER is very
high.

Fortunately, several solutions for postprocessing
GLIMMER2 output have been published that address
the issue of overprediction. The Reganor approach
(see below) modifies both the training stage and the
postprocessing, thus substantially enhancing the performance
of GLIMMER2.

GLIMMER and all companion programs are open source
and can be installed locally. While currently no webserver
provides GLIMMER for on-line use, installation is simple,
and the prediction software can be installed and run on any
off-the-shelf LINUX PC in a few minutes.

GLIMMER is available from http://www.tigr.org/software/
genefinding.shtml.

2.1.4.2. GeneMark by Borodovsky et al.One of the most
often used gene-finding tools for prokaryotes is GeneMark
from M. Borodovsky’s group. This set of tool uses the hidden
Markov model-based approaches and in fact offers several
other tools to identify genes.

However, none of the tools is available for download or
local use. While GeneMark/S22 is a self-trained approach and
can be used without a pretrained model, GeneMark.hmm for
Prokaryotes23 can be only be used with a predefined training
set. The group provides 265 training sets, but many of these
are for closely related organisms.

A comparison of GeneMark/S with other tools13 revealed
a high level of accuracy for predictions made by GeneMark/
S. Since only a few pretrained models are available however,
a more comprehensive comparison is impossible.

GeneMark is generally perceived as having a high
specificity and high sensitivity. Because of the lack of
availability for extensive testing, however, these statements
should be viewed with caution.

The software can be used at http://exon.gatech.edu/
GeneMark/.

2.1.4.3. EasyGene by Krogh et al.Another more recent
development is the EasyGene14,24tool from A. Krogh’s group
in Denmark. As with the other tools, EasyGene is based on
a hidden Markov model (HMM) trained for every new
genome. In the training stage, external evidence in the form
of SwissProt similarities is used; the resulting ORFs are
scored, and their statistical significance is calculated. In order
to determine the significance threshold, an artificial sequence
is generated that has the same statistical properties as the
input sequence, and the expected number of ORFs is
compared to the actual sequence.

Unfortunately, EasyGene suffers from the same short-
coming as GeneMark.hmm. Only a very small number, here
only 25, of pretrained models are available. While more
predictions are available for already sequenced genomes,
EasyGene as presented on the web is not usable for newly
sequenced genomes.

A recent study showed EasyGene showed to have both
high sensitivity and high specificity.13

In addition the group has recently published a study
evaluating existing gene calls in published genomes as they
are deposited in GenBank, revealing substantial short-
comings.14

The software can be used at http://www.cbs.dtu.dk/
services/EasyGene/.

2.1.4.4. ZCurve by Guo et al.Another approach called
ZCurve25 uses linear discrimination functions to classify
ORFs. Here the DNA sequence is transformed to a so-called
zcurve, and predictions are made on the basis of this curve.
The program has not been widely used, and we know of no
independent evaluation of Zcurve.

The software is available in binary format for the Microsoft
Windows platform.

2.1.4.5. GISMO by Krause et al.GISMO13 uses a two-
stage approach for gene identification. In the first stage, ORFs
are screened against the PFAM database.26 The set of ORFs
with good protein domain matches is used as a training set
for a support vector machine (SVM).27 A set of ORFs
overlapping the ORFs in the training set is used as a negative
training set. The SVM can be used to solve nonlinear
classification problems by separating a multidimensional
feature space through a hyperplane. Here the feature space
is defined by the codon usage vectors; each candidate ORF
can be subsequently classified by the SVM using the models.

Krause et al. show that with this approach multiple sets
of ORFs with different properties (genes with different codon
usage or horizontally transferred genes) can be reliably
detected. Since GISMO works well with reasonably small
training sets, the software is well suited for small or
fragmented genomes.

While no independent evaluation has been published,
Krause et al. claim that GISMO achieves both high specific-
ity and high sensitivity.

The software can be downloaded from http://www.
cebitec.uni-bielefeld.de/groups/brf/software/gismo/.

2.1.5. Extrinsic Gene Callers

The second major class of tools for gene prediction in
prokaryotes are the so-called extrinsic tools. These tools rely
on existing knowledge stored in sequence databases. While
a similarity search against a database of all known proteins
appears to be a good way to identify protein-coding ORFs,
this approach has at least two disadvantages: new proteins
cannot be identified, and noise in databases will contaminate
the genome annotation.

Beyond this straightforward approach, a number of more
sophisticated approaches have been published over the past
few years. Three programs can be considered the main
representatives of this group: ORPHEUS, CRITICA, and
Reganor.

Each of these tools uses intrinsic gene prediction technol-
ogy in some form but also relies on sequence similarity
searches. All three tools employ different concepts and show
different performance properties.

2.1.5.1. ORPHEUS by Frishman et al.The oldest of the
three tools, ORPHEUS28 performs a search of the complete
genome against a protein database and subsequently extends
all resulting significant alignments thus creating a set of seed
ORFs. From these seed ORFs, a model is trained for the
codon frequencies. Seed ORFs and ORFs that according to
the model can be classified as “true” ORFs constitute an
output by ORPHEUS.

This tool, using just the codon frequencies as a simple
model in conjunction with the algorithm for creation of the
training set, provided a good solution in the late 1990s, when
it was created. However, ORPHEUS is outperformed by
GLIMMER for specificity and by CRITICA in terms of
sensitivity.
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The software is available upon request from Frishman et
al.28

2.1.5.2. CRITICA by Badger and Olsen. While
CRITICA29 might seem like a variation of the approach taken
by ORPHEUS, it provides a new approach with a fresh new
insight. Relying on the fact that pressure for conservation is
exerted on the protein level, Badger and Olsen based their
tool on the detection of conserved stretches of DNA.

Initially a BLAST alignment is computed for subsequences
of length 3000 for the genomic DNA. For each resulting
alignment, the alignment is recomputed after translating both
sequences into amino acid sequences. If the alignment on
the protein level shows more sequence similarity than that
on the DNA level, Badger and Olsen believe they have found
indicators for “true” protein-coding ORFs. The next step of
the program extends the candidate alignments into full-length
ORFs.

An evaluation of CRITICA12 shows that it produces very
few false positive gene calls unlike many other gene
prediction systems. However, the rate of false negatives is
quite high. CRITICA is routinely used in genome projects.
In comparison tointrinsic gene prediction programs, how-
ever, it requires significantly more CPU time; when consid-
ering the overall effort required to acquire and annotate a
genome, this is usually not viewed as a serious problem.

Since CRITICA relies on BLAST database searches, it
can only predict genes with already sequenced homologs.
However the approach uses a somewhat simple model. Both
factors result in very high specificity and sensitivity that on
average is around 90%. For some purposes, where a high
specificity is paramount, CRITICA is the tool of choice.

The software is freely available at http://www.ttaxus.com/
files/critica105.tar.gz.

2.1.5.3. Reganor by McHardy et al.To unite the best of
both worlds, A. McHardy et al. tried to combine the strengths
of CRITICA (specificity) and GLIMMER (sensitivity). The
main idea for the resulting Reganor12 tool was to use
CRITICA to create a training set for GLIMMER.

The approach is best described saying that the learning
step for model creation is altered, using CRITICA prediction
as a much larger training set. Thus, the false positive rate of
GLIMMER was reduced at some loss of sensitivity. How-
ever, many users feel that the greater specificity outweighs
the lost sensitivity.

Reganor has been successfully used for several dozen
genome projects. Often, the resulting genes were manually
annotated by teams of annotators. The software is available
as part of the GenDB30 genome annotation system and can
be used online at https://www.cebitec.uni-bielefeld.de/groups/
brf/software/reganor/. This approach is also implemented by
Tech et al.31

2.2. Discussion of Tools for Predicting
Protein-Coding Genes

Faced with the choice between possibly missed genes
(false negatives or low sensitivity) and overcalling genes
(false positives or low specificity), many groups in the past
chose to lean toward overcalling. While still a suitable
approach in many situations, certain downstream analysis
steps are made substantially harder by overcalling genes.

Extrinsic (i.e., sequence similarity-based) tools have a
tendency to miss genes that have not been deposited in the
databases. However, using protein-domain-based analysis
(e.g., GISMO) is likely to overcome this shortcoming.

In addition, since many groups would like an early start
to the annotation process, there is pressure to compute gene
predictions as soon as possible. The result is often a situation
where multiple contigs still exist and genes are called for
these, leading to fragmented genes.

Here the tools based solely on intrinsic methods expose
another weakness: their training phase requires a large data
set, and generally their performance is weaker with shorter
contig lengths.

Another length-related phenomenon is the problem of
correctly calling short genes. A number of systems simply
exclude genes shorter than a given threshold. Most systems,
however, still have difficulties in correctly identifying ORFs
shorter than 300 bp or 100 amino acids. A study from 2001
clearly shows the shortcomings of existing gene calls with
respect to short genes.32

2.2.1. Difficulties with the Correct Start Prediction

When one looks at multiple genomes using a tool for
comparative genomics, it becomes clear that for many closely
related genomes gene starts have been called differently by
the various annotation teams or by their gene calling
software. While a number of approaches for the correct
identification of gene starts have been attempted,21,33 most
of the genomes in the public databases34 still show incorrect
start calls in addition to false and missing gene calls.

When viewing clusters35 of related genes across multiple
genomes, the shortcomings become apparent. The authors
firmly believe that only thorough comparative analysis will
lead to correct calls for the gene starts.

2.2.2. Problems Caused by Low Sequence Quality
Genomes

All software systems as of today are not aware of the
sequence quality of the genomes for which they are calling
genes. Existing algorithms have significant shortcomings
when presented with fragmented or low-quality genomic
sequences. Because it is routine practice to chain contigs
together using either runs of the N character, fragmented
genomes cannot easily be detected by the gene calling
software. A more sophisticated approach to contig chaining
is adding a sequence fragment that contains stop codons in
all six frames. As discussed above, genomes in multiple
contigs posed difficulties to intrinsic gene callers since the
size of the training set is often too small.

As it is becoming routine practice to sequence genomes
using the new pyrosequencing-based technologies, genomes
in several dozens or even hundreds of contigs are becoming
more and more common. Using the procedures that have
been devised forfinishedmicrobial genomes that are in one
contig is more than likely to produce a large proportion of
false positive gene calls. In fact the authors have witnessed
this behavior for several low-quality data sets already. Here,
a method based on comparative genomics could provide a
much needed solution.

Unfortunately today, a large number of low-quality gene
calls14 for low-quality genomes are in the databases. Since
in general the sequence quality of genomes deposited in
GenBank is not known, there is no method for computing
exact numbers.

The latest generation of gene calling procedures has
provided the community with systems that reliably work for
high- to medium-quality genomes; with use of support vector
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machines, significant improvements were made in the areas
of short genomes and alien sequences.

Foreseeable future improvements are in the area of gene
starts and short genes both using improvements in machine
learning technology and exploiting the power of comparative
genomics.

2.2.3. Gene Calling for Metagenomics

To the best of our knowledge, current gene prediction tools
cannot be applied to data sets coming out of random
community genomics where DNA from an environment is
sequenced without first cloning the DNA. While numerous
data sets like the one described by Edwards et al.36 exist,
our ability to call genes in these sets is currently very limited.
With existing gene calling technology rendered useless
because of extremely short fragments of DNA, most groups
rely on a simple extrinsic approach: they BLAST all
fragments against the database of known proteins and derive
possible open reading frames from the hits. This, however,
cripples the ability to discover new proteins in these data
sets. The approach described by Krause et al.37 is a first
attempt to overcome this problem by combining BLAST
search and the analysis of synonymous and non-synonymous
substitutions rates, a technique similar to the one applied by
CRITICA.

2.3. Prediction of Non-Protein-Coding Genes and
Features

The prediction of non-protein-coding features on the
chromosome has been gaining importance over the past few
of years. A number of standard tools have been used by many
groups.

2.3.1. Prediction of Ribosomal RNA (rRNA) Genes

N. Larsen has developed a BLAST-based system that
predicts the set of ribosomal RNA features on the chromo-
some. The software has not been published but is available
from the author upon request (niels@genomics.dk).

2.3.2. Prediction of Transfer RNA (tRNA) Genes

A hidden Markov model-based detection program pub-
lished38 by S. Eddy’s group still defines the state of the art
for the prediction of transfer RNAs in prokaryotes. With high
sensitivity and a very low ratio of false positives, tRNAs
predicted with tRNAscan-SE are included in many genome
annotations. Even though the software was initially described
in 1997, it is still widely used. In addition to the source code
for local installation, the authors provide a Web server to
run the software.

The software is available and can be used online at http://
lowelab.ucsc.edu/tRNAscan-SE/.

2.3.3. Prediction of Other Non-Coding RNA (ncRNA)
Genes

RFAM39 is a collection of noncoding RNA families and
the corresponding sequence alignments and covariance
models that enables searching for RNA genes. While the
RFAM library also contains models that enable searching
for tRNAs, the computational resources needed to run the
associated toolInfernal render such searching almost impos-
sible. While the data and software are available as open
source, running it for complete genomes requires substantial

resources. Accordingly no Web server offers screening of
complete genomes against RFAM.

A more realistic scenario for running RFAM would be to
run it as the last step of a feature prediction pipeline after
all other features have been predicted. By limiting the
searches to the areas not covered by other features, the
computational costs can be limited.

2.4. Discussion of Gene Calling
The existing tools allow high-quality gene calls to be

computed in a matter of minutes for most genomes. However,
accurate prediction of starts and short genes still presents a
challenge for most systems.

From the perspective of a consumer of gene predictions,
the important points to keep in mind are the requirements
of the downstream analysis and the sequence quality of the
genomes. Methods that work well for high-quality sequences
with one contig and very limited numbers of frameshifts
generally do not work well for fragmented, low-coverage
genomes.

Since many methods in bioinformatics rely on evaluation
of sequences as they are deposited in the sequence databases,
the existence of numerous false positives32 and false nega-
tives12 in these databases poses significant problems to all
users of bioinformatics tools.

We expect that a number of groups start projects to clean
up existing gene calls. Initial work in this direction has
already been done by a number of groups (for example, in
Germany12 and Denmark14).

3. Characterizing Function
The focus of this part of the review is how to characterize

the function of identified genes accurately. That is, given a
set of identified genes, we focus on the task of assigning an
estimate of function to each gene. We think of thefunction
of a geneas represented by a relatively short text string,
although it is certainly equally reasonable to think of it as a
complex set of assertions. What we are calling the function
of a gene, in the case of a protein-encoding gene, is
frequently called thename of the gene product,or just the
product name.

In most cases, individuals annotating the genes within a
newly sequenced genome think of themselves as attempting
to leave accurate estimates of function or useful clues when
precise estimates are not achievable. The emphasis is on
accuracy. On the other side, those researchers annotating
protein families tend to think of functions as Platonic
abstractions; in this case, the annotation process amounts to
connecting individual genes to one or more (in the case of
multifunctional gene products) of these abstractions. The
functional abstractions are grouped to represent abstractions
of cellular machinery (e.g., pathways). Both perspectives
address real needs, and as we progress toward establishing
conventions for structuring product names, both aspects will
need to be reconciled.

One basic view of how characterization of function is
achieved is that we have a continuously progressing wet-
lab effort producing reliable characterizations and that the
role of genome annotation efforts is to accurately project
these solid assignments to as broad a class of genomes as
possible. This leads to a simple visual image: If one thinks
of accurate characterizations as pebbles being dropped into
a calm pond, then the ripples represent the impact moving
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outward in the space of similar sequences. Points that are
not extremely close to a dropped pebble end up absorbing
waves from a number of sources, and the outcome is not
clear. Integration of information (i.e., of the ripples) is
complicated badly by the fact that controlled vocabularies
have not yet been adopted (a topic discussed below).

Two aspects of the common view need to be noted. First,
the impact of experimentally characterized genes is often
limited to new genomes because groups annotating genomes
often fail to go back and update the function assignments.
In this regard, the groups annotating protein families play a
critical role. It is not unusual to find an annotation on a
primary sequence source failing to reflect wet-lab results
published years before but accurately reflected in the protein
family collections. Second, the bioinformatics aspect of
annotation efforts is now beginning to play a more active
role than simply projecting experimental results; predictions
of merit are now being made regularly based solely on
comparative analysis.

3.1. The Use of a Controlled Vocabulary and the
Need for Consistency

The bulk of this review focuses on how one attempts to
determine the function of a gene, not how to express that
function. However, the issue of whether the functions of
genes should be expressed in a controlled vocabulary and
more specifically which vocabulary is a topic of growing
interest and deserves some discussion. The need has been
succinctly stated in the UniProt protein naming guide-
lines:40

Consistent nomenclature is indispensable for com-
munication, literature searching and entry retrieVal.
Many species-specific communities haVe established
gene nomenclature committees that try to assign
consistent and, if possible, meaningful gene symbols.
Other scientific communities haVe established protein
nomenclatures for a set of proteins based on sequence
similarity and/or function. But there is no established
organization inVolVed in the standardization of protein
names, nor are there any efforts to establish naming
rules that areValid across the largest spectrum of
species possible.

At least two aspects of establishing a “consistent nomen-
clature” should probably be thought of as distinct: using a
controlled vocabulary for the gene functions (product names)
and embedding the gene function within one or more
hierarchies (or directed acyclic graphs, in cases in which strict
hierarchies are viewed as too constraining).

Let us first consider just the issue of a controlled
vocabulary for the actual gene function. In practice, there
are two key factors limiting the rate of standardization: (1)
Many of the important genomes have established organism-
specific databases, and within these, the incentives for
seeking and adopting a vocabulary common to all pro-
karyotes are limited. (2) Much of the existing vocabulary
for gene functions is due to large annotation efforts focusing
on the annotation of protein families.3,4,6,41,42These efforts
have produced large numbers of annotations in a few,
somewhat inconsistent vocabularies. Figure 6 illustrates the
level of incompatibility for even the most commonly
accepted gene functions.

It is important to note that this level of incompatibility
poses minimal inconvenience for a trained biologist but

makes it difficult (if not impossible) for programs to
accurately predict when two gene functions represent the
same abstract notion. This in turn substantially reduces the
capability of automated annotation efforts. We feel that it is
essential that consistent, controlled vocabularies be estab-
lished for expression of gene function. These will be critical
to achieving and maintaining accuracy as the number of
annotated genomes grows exponentially. We believe that the
perspective of maintenance of protein families is critical to
this discussion for reasons that will become apparent below.
For now, we wish to emphasize the following specific needs:

1. The single most critical need is to make it possible
to easily determine whether two gene functions (product
names) describe precisely the same abstract function. The
exact wording of a gene function is not tremendously
significant, since one can associate whatever clarifications
or amplifications to the function one desires.

2. The next most important need is to give distinct
functions distinct names. This is a far from obvious need,
since it is common practice to specify unknown functions
ashypothetical protein.However, it is extremely useful
to be able to recognize that a set of proteins all share the
same function, even if that function is unknown or
imprecisely characterized.

3. It is important that sets of proteins sharing the same
function name can all be easily reassigned new descrip-
tions of function in response to newly published research.
That is, it is essential that renaming the function associated
with a protein family can be done easily.

It is, perhaps, worth noting that the development of PIR
families, the construction of a vocabulary at SwissProt, and

Figure 6. The need for a controlled vocabulary. These product
names all occur within the archives and protein families. In these
two cases, a biologist would quickly grasp that the different names
describe the same abstract function, but programs often fail.
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the use of clusters of orthologous groups (COGs) were all
significant steps in addressing these needs.

There has also been a rapidly growing interest in placing
gene function within hierarchically structured ontologies.
These grew out of early efforts to impose order on the
collection of gene functions within single genomes.43,44 At
this point, the GeneOntology (GO) effort45 has emerged
within eukaryotic genome analysis as the framework in which
a controlled vocabulary for the hierarchical ontologies is
being developed. The situation within prokaryotic annotation
is less clear. As mentioned above, large numbers of high-
quality annotations have now been produced by teams
annotating protein families. Each of these groups uses a
vocabulary in which the precise product names often fail to
identically match the existing GO vocabulary, and the GO
vocabulary is far from complete for prokaryotic gene
functions. It seems likely that at least the nomenclature of
gene functions will be standardized in the next few years.
Whether or not the result is based on GO is not yet clear.
The intermediate position of developing mappings between
distinct controlled vocabularies has begun. This effort
involves reconciliation of a number of carefully maintained
collections of protein families. This act of reconciliation is
central to the effort to standardize nomenclature, and we
expect the UniProt3 effort to ultimately play a major role.

It is important that some comments be made about the
annotation of genes encoding multifunctional proteins. At
least three distinct notions need to be expressed: (1) The
product has multiple distinct functions implemented by
distinct domains. (2) The product has multiple distinct
functions implemented by a single domain (e.g., an enzyme
with broad specificity). (3) The product has one of a set of
functions, but we do not know which.

Any effort to generate a controlled vocabulary for express-
ing the function of a gene must address each of these three
distinct classes of assertions. To gain some insight into the
complexities, consider the case of the 2-methylisocitrate
dehydratase inSalmonella typhimuriumLT2.46 The following
facts are relevant: (1) A four-step pathway exists that is
capable of converting propionyl-CoA to succinate. (2) Three
of the four steps are catalyzed by genes that occur in a tight
cluster on the chromosome (which is conserved throughout
numerous of the existing sequenced genomes). (3) The
remaining enzymatic role, 2-methylisocitrate dehydratase (EC
4.2.1.99), converts 2-methyl-cis-aconitate to methylisocitrate.
Aconitases, which are normally associated with the conver-
sion of citrate to isocitrate in the tricarboxylic acid cycle
(TCA), implement this role.

Hence, the function assigned to the genes encoding
aconitases in organisms that have the four-step pathway must
express the fact that they catalyze two distinct reactions
(citrate to isocitrate and 2-methyl-cis-aconitate to methyl-
isocitrate). However, in organisms without the propionyl-
CoA to succinate pathway, essentially the same aconitases
catalyze only the reaction from the TCA. That is, a normal
aconitase will often have the potential of catalyzing EC
4.2.1.99, but in organisms lacking the other enzymes, it only
actually catalyzes the conversion of citrate to isocitrate. A
decision must be made about whether the gene function
should express just the actual or also the potential enzymatic
roles (see Figure 7).

In our judgment, the gene function should express the
functional roles that the encoded protein is believed to
actually implement, but good arguments can be made for

either side of the issue. One strong argument for expressing
the potential is that it simplifies automated projection of
function assignments to new genomes. If only actual roles
are to be specified, then a rule-based projection strategy will
be essential to support automation.

3.2. Initial Annotations

The technology for producing and curating function
assignments has progressed rapidly since 1995, when the first
complete bacterial genome became available.47 However, the
single most significant component of annotation technology
was and remains inferences based on sequence similarity.
Two tools stand out as having played major roles in the use
of similarity to infer homology (leading to conjectures of
function): FASTA48 and BLAST.49 FASTA was developed
first and was widely used. Both the WIT50 and ERGO41

systems used it almost exclusively. It provided what were
felt to be somewhat more sensitive searches for global
similarity (similarity across the entire length of the similar
proteins). However, BLAST offered performance advantages
and has been incrementally improved. It is now considered
to be the standard tool for detection of sequence similarity.
Given a protein sequence, the first step in seeking an
appropriate functional assignment is to use BLAST to locate
similar sequences in a large collection of already annotated
sequences. There are a number of blast servers, but by far
the one most commonly used is the one supported by NCBI.51

It would be fair to say that the creation of BLAST and the
provision of this blast service have been the foundation upon
which most of the analysis of the first few hundred genomes
has been based.

The basic annotation strategy using BLAST involved
BLASTing each new sequence against previously annotated

Figure 7. Do we annotate the actual or potential functions? Here,
if A (the ability to convert propionyl-CoA to succinate) is present,
then the function of the product of the red gene is multifunctional
(implementing 4.2.1.3 and 4.2.1.99); if not, then the gene actually
only implements 4.2.1.3 (which in itself catalyzes two distinct
reactions).
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sequences, gathering the reported similarities, and then
integrating the evidence to make a judgment. When early
genomes were studied, the integration process involved a
skilled biologist looking at the clues and pursuing them using
a broader suite of tools. Some of these annotators were far
more effective than others. In many cases, integration
amounted to picking the most similar sequence and copying
the annotation. As volumes of data grew exponentially, it
became clear that there was a great deal to be gained by
thinking about efficient ways to both automate the processes
used by successful annotators and to address issues of
scalability. The overall annotation task can reasonably be
divided into two components: (1) a data acquisition com-
ponent produced raw evidence by running a set of relevant,
proven tools, and (2) an integration component attempted
to replicate as much as possible of the processes used by
the better human annotators.

The first task is relatively simple, but requires access to
computational resources. As outlined in Figure 8, for most
genomes, a number of tools are run against the set of proteins
predicted for that genome. We believe that the most valuable
source of evidence was and remains similarities against
proteins in carefully annotated protein families.

The second task, the integration of the output of a set of
tools, is often viewed from one of two perspectives. The
first position notes that the rapid increase in volume will
continue to be exponential and focuses on the development

of a fully automated technology. The second approach notes
the complexity of the judgments made by human experts
and follows the goal of increasing the productivity of the
human annotators. These are, in fact, not incompatible
approaches. Clearly, the vast majority of annotations pro-
duced during the next 5 years (for thousands of genomes)
will be done almost entirely automatically. Anything less
than capturing and applying the types of judgments of skilled
human annotators will simply produce a growing body of
mistakes. In a work that we highly recommend, Koonin and
Galperin offer many insights into what is wrong with the
existing annotations and what is needed to address these
errors56,57 and offers interesting insights into problems
resulting from incorrect annotations.

3.3. Specialized Tools To Support Assignment of
Function

Table 1 lists a number of useful tools for the assignment
of function. These compute specific properties that are often
relevant to accurately characterizing gene function.

Most of these tools are quite accurate, at the expense of
significant computational costs. While Web servers exist for
some tools, most groups aiming at annotating a complete
genome will need to locally provide the required computa-
tional resources.

Rey et al.67 presented a detailed comparison of prediction
performance.

3.4. Protein Families
The perspective of the annotator trying to annotate the

genes in a newly sequenced genome is to consider “one gene/
protein at a time”. A major improvement in accuracy can
be attained when annotators focus on sets of similar (and
presumably homologous) sequences. The basic steps in
investigating protein families may be summarized as follows:

• Form a set of sequences that are similar, and construct
a multiple sequence alignment.

• Using the alignment, construct a phylogenetic tree that
represents an estimate of the evolutionary relationships
of the sequences.

• Label the leaves of the tree with the functions
corresponding to each sequence.

• Carefully analyze and consider the points where
function appears to change.

• If possible, characterize the motifs or structural
features that characterize functional groupings.

Figure 9 illustrates what we mean by these steps. The
underlying hypothesis is that function changes rarely so we
expect to see a tree with a single function or that when a
function does shift we expect to seecoherent subtreesin
the sense that the function does not simply flip back and
forth. The original picture is often a tree in which function
assignments are badly mixed. The process of slowly using
the tree to bring the assignments into agreement with a
hypothesized evolutionary history composed of a limited
number of shifts in function is at the heart of curating these
families.

Once we have formed a working model of what functions
should be assigned to the sequences in the tree, the tree is
used to support assigning function to new sequences. The
process of annotation reduces to adding each new sequence
to the multiple sequence alignment, using the alignment to

Figure 8. The majority of the genomes available in the public
archives have been annotated using an approach very similar to
this. Either GLIMMER19,52or GeneMark53 is used to predict genes,
a BLAST49 similarity search is computed against NCBI’s non-
redundant protein database, and in addition a number of protein
family or protein domain databases such as Pfam,26 InterPro,54 and
the conserved domain database (CDD)55 are searched. The resulting
evidence is then integrated in the next step.
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insert the new sequence into the phylogenetic tree, and
inferring the appropriate function based on the position of
insertion.

We find it useful to think of a protein family asa set of
proteins that perform the same function and are globally
homologous. This amounts to partitioning the tree into
coherent subtrees and labeling each of these subgroups as a
distinct family. Associated with each family is a decision
procedure that would take a new sequence in as input and
decide whether it belonged to the family. Perhaps the most
accurate such procedure would be the one mentioned in the
preceding paragraph (determination of where the sequence
belongs in the tree), but simpler procedures work just as well

for many families. Indeed, the construction of hidden Markov
models (HMMs) to implement the decision procedure is an
extremely effective approach for many (perhaps a majority)
of the protein families. A number of groups have made
significant progress using HMMs,68,69most notably the way
of Bateman et al.26,70 or Haft et al.71 Other important
approaches that contain HMM technology or use alternative
but quite similar technology are InterPro54 and CDD.55

Attaching decision procedures based on distinct technologies
to each family will almost certainly be necessary as we
progress toward more automation, while improving accuracy.
We believe the common view that the rapid introduction of
new genomes will inevitably lead to cascading errors is, we

Table 1. Useful Tools for Detailed Functional Annotationa

tool description citation URL availability

PSORTb (v2.0) localization prediction tool 58 http://www.psort.org/psortb/ GPL
TMHMM predict transmembrane helices 59 http://www.cbs.dtu.dk/services/TMHMM/ binary available

upon request
SignalP-(v3.0) predict signal peptides 60 http://www.cbs.dtu.dk/services/SignalP/ binary available

upon request
CELLO SVM-based subcellular

localization sites
for Gram-negative
bacteria

61 http://cello.life.nctu.edu.tw/

TMPRED homology-based (weight-matrix-
based) prediction of
membrane-spanning
regions

62 http://www.ch.embnet.org/software/
TMPRED_form.html

open source

tRNAscan predict tRNAs 38,63 http://lowelab.ucsc.edu/tRNAscan-SE/ GPL
Phobius combined prediction of signal

peptides and
transmembrane helices

64 http://phobius.cgb.ki.se

PSLpred PSIblast- and SVM-based
method for subcellular
localization of
Gram-negative
bacterial proteins

65 http://www.imtech.res.in/raghava/pslpred/ Web-Server,
no local
install

RFAM and
infernal

find noncoding short RNAs 39,66 http://www.sanger.ac.uk/Software/Rfam/,
http://infernal.janelia.org/

GPL

a In addition to sequence similarity based tools, a number of special-purpose tools have become widely used to assist with assignment of specific
functions or protein localization in the cell.

Figure 9. The relationship of alignments, trees, and gene function. This figure illustrates the notion that function determination can be
viewed as a process based on analysis of where a new sequence belongs in a phylogenetic tree derived from an alignment.
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believe, essentially wrong; as the details for each family are
carefully developed, the additional data provided by the
growing wealth of genomes support more accurate compara-
tive analysis, which will rapidly reduce the overall error rate.

3.4.1. PIR: In the beginning...

The Protein Identification Resource (PIR)71 grew out of
the Atlas of Protein Sequence and Structure, a project
initiated by M. Dayhoff in 1965. This effort pioneered many
of the techniques for creating and maintaining protein
families and continues today at the Georgetown University
Medical Center. The terminology chosen by this group is as
follows:

The primary leVel is the homeomorphic family, whose
members are both homologous (eVolVed from a common
ancestor) and homeomorphic (sharing full-length se-
quence similarity and a common domain architecture).
At a lower leVel are the subfamilies which are clusters
representing functional specialization and/or domain
architecture Variation within the family. AboVe the
homeomorphic leVel there may be parent superfamilies
that connect distantly related families and orphan
proteins based on common domains.72

This terminology does not agree with our notion of a
family containing proteins with a common function. In the
PIR perspective, the overall grouping is a superfamily, which
may contain multiple families, each displaying a common
domain structure. Subfamilies may be developed when
detailed divisions based on function or minor variations in
domain can be established. Families may or may not be
subdivided. Hence, our notion of a set of proteins with a
common function and global homology would amount to a
lowest division (either family or subfamily) in which the PIR
grouping included only proteins with a common function.

This group is one of the major participants in the UniProt
effort3 and, with SwissProt,2 will undoubtedly play a leading
role in moving toward a common controlled vocabulary and
carefully curated set of protein families.

3.4.2. SwissProt

SwissProt73 has become widely recognized as the central
repository of high-quality annotations. At its center is a
collection of extremely well annotated protein sequences,
which are then linked to a wide variety of categories of data.
The ProSite74 collection of patterns that characterize function
has historically played a serious role in forming and
maintaining protein families. SwissProt has adhered to
extremely high standards of manual curation. The actual
number of sequences in the collection represents a small
fraction of the overall number of available protein sequences,
due to the effort required to maintain high quality (high-
quality annotations, low redundancy, and integration have
been the dominant themes of the collection2). The collection
has had a major impact because of efforts to propagate this
relatively high quality of annotations to related proteins.
TrEMBL2,3 constitutes a project to provide automatically
derived annotations based on propagation of the SwissProt
core to newly available protein sequences.

Perhaps the most notable developments relating to
SwissProt are its participation in UniProt, a consortium that
hopefully will lead to establishment of clean, consistent
protein families and a controlled vocabulary,3 and the
development of HAMAP.75

The goals of the HAMAP are central to the topic of this
review:

The HAMAP project aims to automatically annotate
in UniProtKB/Swiss-Prot a significant percentage of
proteins originating from bacterial and archaeal ge-
nome sequencing projects, with no decrease in quality.
It is also used to annotate proteins encoded by complete
plant and algal plastid genomes (e.g., chloroplasts,
cyanelles, apicoplasts, non-photosynthetic plastids), and
will be extended to mitochondrial genomes.

Our automatic annotation methods, using a rule-
based system, are only applied in the cases where they
are able to produce the same quality as manual
annotation would. This concerns two distinct subsets
of proteins:

1. proteins that haVe no significant similarity to any
other microbial or nonmicrobial proteins (ORFans);

2. proteins that are part of well-defined families or
subfamilies.

3.4.3. UniProt
UniProt was formed as a consortium merging efforts at

SwissProt, PIR, and European Bioinformatics Institute.3 The
formation of this cooperative effort is rapidly leading to the
creation of a controlled vocabulary, a distributed set of
protein families reflecting that vocabulary, and an integration
of the families with a broad variety of protein-related data.
It is quite likely that this first step at integration will continue.
At the very least, it seems likely to us that mappings between
the protein families emerging from UniProt and those from
other sources (e.g., those from KEGG, TIGR, and P1K) will
be maintained. This would constitute a major step toward a
common nomenclature.

3.4.4. COGs
In 1997, Tatusov, Koonin, and Lipman published a paper

in Sciencereleasing “720 clusters of orthologous groups
(COGs)”.76 This was a seminal piece of work that attempted
to group orthologs and to use these clusters of orthologs to
develop and maintain a consistent set of function assign-
ments. It is fair to say that this effort had a substantial impact
on both cleaning up the huge inconsistencies in the public
annotations and moving toward a framework that could
support semi-automated annotations while maintaining ac-
curacy.

3.4.5. TIGRFAMs
TIGRFAMs were introduced in 2001 as a set of protein

families with associated HMMs “designed to support the
automated functional identification of proteins by sequence
homology”.70 The original collection included over 800
protein families divided into two classes. The first class,
equiValogs,are those families in which all of the members
have been assigned the same function (essentially the notion
of protein familiy we suggested above). The second class
represents sets of proteins that share related functions (that
is, a common class functions in which the precise functions
cannot yet be differentiated). There are over 2946 (release
6.0) TIGRFAMS in the distributed collection.

3.5. Annotation of Related Protein Families
Just as moving from annotating single genes/proteins at a

time to annotating families of genes/proteins improves
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accuracy, the annotation of sets of families simultaneously
can be used to introduce more accuracy. The essential idea
is that one forms a set of related functional roles and then
annotates the entire protein families that implement these
roles simultaneously. The termsubsystemhas come to refer
to such a set of simultaneously annotated protein families
(in refs 6 and 42, the termsubsystemis defined as “a set of
functional roles”, but this amounts to the same notion).
People often speak of the set as imposing acontext or
neighborhoodthat allows numerous consistency checks.

The advantages of annotating a set of protein families
simultaneously, using these different forms of context to
support the development of a consistent interpretation, have
become widely recognized.5,6,56,77,78

The concept of annotation via subsystems is the basis of
the Project to Annotate 1000 genomes.6,42 In some sense,
this paper did not represent a radical departure; indeed,
annotation of protein families and proposals to construct
expert systems for specific classes of proteins75 certainly
amounted to a widespread recognition that annotation of
specific genes out of context was error prone. On the other
hand, the view that one must annotate sets of families, that
this should be done by experts who have studied specific
cellular processes (rather than increasingly skilled annotators
unfamiliar with the details of a research area), and that tools
to support annotation of subsystems were critical did amount
to a significant development. With the rapid sequencing of
thousands of genomes, we believe that annotation of a
growing body of subsystems by specialists who use tools to
support near-automatic extensions of existing analyses will
be the dominant strategy.

At this point, 35-40% of the genes in a relatively few
genomes have been placed into a collection of subsystems.
This number will grow to at least 50% for most genomes
within a year or two.

3.6. Functional Coupling
While similarity-based reasoning has dominated most

annotation efforts, there are a growing class of technologies
can be used to reveal what is often calledfunctional coupling.
The term itself is vague (and, hence, somewhat irritating),
but it does represent a notion of central significance.
Operationally, we might think of two genes as “functionally
coupled” if a skilled annotator would place the functional
roles implemented by the two genes within the same
subsystem. This, of course, sidesteps the issue of the criteria
an annotator would use to place two functional roles within
a single subsystem. In any event, the use of these non-
similarity-based technologies plays a rapidly increasing role
in contributing to the annotation of “hard cases”, most
commonly those characterized by numerous paralogs or in
cases in which relevant genes show no similarity to known
cases (that is, cases in which there are too many candidates
because of similarity or in which there is no detectable
similarity).

Figure 10 depicts some of the more common and useful
techniques for detecting functional coupling; we will discuss
the examples from that figure in detail.

We alluded to the basic idea that annotation is the science
of propagating wet-lab characterizations, and we suggested
that such a view needs to be modified in the presence of
current advances. We suggest that the process of annotation
be viewed as establishing sets of relatively reliable assertions
of function supported by wet-lab results and consistency

arguments and then propagating these results based on
similarity and consistency arguments. The consistency argu-
ments are based on these different approaches to estimating
functional coupling. As the number and diversity of available
genomes increase, the clues arising from a number of these
techniques increase rapidly. In particular, the functional
coupling estimates due to clustering of related genes in
prokaryotic genomes and to clarification of regulatory sites
are now leading to a growing number of wet-lab confirma-
tions. There is a growing awareness that integration of
disparate sources of functional coupling clues will allow more
sophisticated and precise consistency arguments and interest
in constructing such integrations is increasing.79-82

3.6.1. Functional Coupling Based on Chromosomal
Clusters

In 1998, two independent efforts reported on how one
might exploit the fact that functionally related genes tend to
cluster on the chromosome.83,84One of these efforts reported
an estimate that approximately 50% of the genes in a typical
prokaryotic genome occur in close proximity to functionally
related genes. This is easily verified: pick any cellular
subsystem for which the genes are known and look at the
distribution on the chromosome of those genes. The degree
of clustering does depend on specific genomes (cyanobacteria
tend to have approximately 20-25% of the genes clustered,
while most other prokaryotes appear to have 50-60%
clustered). The clustering seems to occur for both genes in
central pathways and those in pathways of secondary
metabolism (this can easily be checked by looking at
instances of known pathways, complexes, or non-metabolic
subsystems).

The context-based analysis introduced by the presence of
clusters of functionally related genes has proven extremely
significant.85-88 It has supported efforts to construct families
with functions that could be predicted with confidence, which
are then used to address ambiguous cases. The power of this
technique has increased with the number of available
genomes. As we move into an era of thousands of diverse

Figure 10. Clues to functional coupling. Functionally related genes
can be revealed by using a variety of methods.
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genomes, we expect the use of chromosomal clusters to play
a central role in clarification of function and the construction
of protein families in which each member plays the same
function.

3.6.2. Functional Coupling Based on Detection of Fusion
Events

The prediction of functional coupling based on detection
of fusion events is often referred to as the Rosetta Stone
method. The basic idea behind the technique79,89 is to detect
instances in which two genes sometimes appear as distinct
genes and sometimes as a single fused gene. Detecting such
fusionsprovides extremely strong evidence that the functional
roles implemented by the two distinct genes (or by the fused
gene) are functionally related. Just as with chromosomal
clustering, the value of this technique increases with the
number of genomes. As the number of completely sequenced
genomes continues to grow rapidly, the number of detected
fusions increases.

3.6.3. Functional Coupling Based on Regulatory Sites
Over the past 4-5 years, it has become possible to use

the analysis of upstream regulatory sites to support accurate
characterization of regulons (and, hence, to support charac-
terization of the genes that make up each regulon). Much of
this work was pioneered by the team of Gelfand and
Mironov,90 but a number of other groups have also been quite
successful.91 These efforts are based on careful, case-by-case
analysis, and we are not yet in a position to comprehensively
characterize regulatory sites in genomes. However, it is now
routine to use analysis based on detection of regulatory sites
to develop an unambiguous function for a family of proteins.

3.6.4. Functional Coupling Based on Analysis of
Expression Data

The growing body of expression data (largely in the form
of microarray experiments) offers an obvious mechanism for
characterization of regulons. A growing body of work centers
on the extraction of interaction networks from a collection
of such experiments. In our view, the characterization of
regulons represents the next step in advancing prokaryotic
annotations. The expression data, as well as the exposure of
regulatory sites, will be integrated with the subsystem
annotations to develop estimates of regulons as sets of
subsystems.92

3.6.5. Functional Coupling Based on Occurrence Profiles
Suppose that we havemsequenced genomes andn protein

families. Then, we can construct anm × n matrix in which
each entry contains 0 or 1 depending on whether the
corresponding genome includes at least one gene that encodes
a protein from the given family. In this case, each of them
rows (one per genome) would encode a vector indicating
which protein families were present, and each column (one
per protein family) would constitute an occurrence profile.
Two columns with similar profiles correspond to proteins
that might play related roles. It is certainly not obvious that
they must (since, for example, all universal proteins will have
completely identical occurrence profiles), but when the
profile correlates closely with a recognizable phenotype (e.g.,
the entries corresponding to photosynthetic organisms all
contain 1, and the rest contain 0), the technique can be
remarkably predictive. As the number of complete genomes
grows, the utility of this technique continues to improve.

3.6.6. Functional Coupling Based on Protein−Protein
Interaction Data

Protein-protein interaction data represents another tech-
nology that can be used to expose functional coupling. At
this stage, it has (at least for prokaryotes) produced a fairly
limited amount of data.79,93,94 Moreover, the data sets that
are available tend to be relatively small, and the data is often
noisy.

3.7. Expert Curation
Until recently, expert curation was basically a wet-lab

effort led by individuals with decades of experience in
understanding specific domains. Improvements in bioinfor-
matics tools and the advances described as “context-based”
analysis have led to a number of efforts in which acknowl-
edged domain experts made sustained efforts to clean up
annotations relating to their area of expertise. The results
are, in our opinion, stunning.

3.8. Why Annotations Will Rapidly Improve
The overview of the annotation process provided in Figure

2 depicts three interacting components: initial annotations,
integration/construction of gene families, and expert curation.
The annotation of previously published genomes (as clari-
fication of the genes advances) is largely handled by two
types of efforts: the literature summarizes the impact of wet-
lab advances, and groups developing protein families attempt
to project advances and develop an integrated view of
function. We expect that the availability of large amounts
of genomic data, as well as the growing accuracy of
conjectures feeding the wet-lab efforts, will dramatically
increase the productivity of wet labs. The existing annotations
of complete prokaryotic genomes constitute a model in which
a relatively small percentage of the annotations are supported
by direct wet-lab data and the vast majority (necessarily)
are supported by different forms of consistency arguments.
As comparative analysis clarifies these consistency issues,
our ability to focus wet-lab efforts to resolve the weakest
portions of the model will improve. Similarly, as the model
improves and the consistency dependencies come into focus,
our ability to accurately project conjectures onto thousands
of new genomes will improve dramatically.

4. Summary
Thousands of bacterial and archaeal genomes of widely

varying quality will be made available in public archives
during the next 5 years. The value of this data will directly
depend on the quality of the annotations. There is every
reason to believe that the overall quality of annotations will
improve rapidly because of a number of factors:

1. The body of reliable annotations is expanding rapidly.
The core of wet-lab confirmations is being supplemented
by annotations supported by context-based analysis, and
the consistency arguments supporting these annotations
are gradually removing numerous ambiguities. Tools to
support domain experts trying to rationalize specific
subsystems or fragments of metabolism across the entire
set of genomes are improving.

2. The core of reliable annotations is being used to
develop collections of protein families of rapidly improv-
ing quality and coverage.
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3. Controlled vocabularies are emerging from the major
collections of protein families. It is reasonable to expect
that the distinct vocabularies will rapidly converge; in
cases in which differences persist, mappings between the
vocabularies will be maintained.

4. Our ability to accurately and automatically annotate
new genomes will steadily improve largely as a result of
improvements in the protein families.

Numerous issues relating to special classes of proteins
(e.g., transposable elements, transporters, regulatory proteins,
and restriction enzymes) will be addressed by customized
rules. These will be important, but the overall quality will
be determined by the protein families. Substantial efforts will
be devoted to pseudogenes and frameshifts, especially in the
presence of thousands of genomes with low-quality sequence,
but these should be viewed simply as part of the opportunity
to actively compare and analyze thousands of distinct
genomes.

We expect that many of the architectural details and
diversity present in prokaryotic genomes will be cast in
dramatic detail over the next 5 years. These dramatic
advances in the basic infrastructure will lay the foundation
for advancing our understanding of unicellular life.
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